

CCSDS File Delivery Protocol (CFDP)

June 5, 2003

Tim Ray

NASA – Goddard Space Flight Center

301-286-0581

Timothy.J.Ray@nasa.gov

AGENDA

- ◆ Why CFDP?
- ◆ What is it?
- ◆ How does it work?

(CCSDS = Consultative Committee for Space Data Systems)

Why CFDP? - Summary

- Loads and Dumps need improvement
- How? Use reliable file transfer protocol
- ◆ Which one?
 - Depends on your perspective
 - ❖ From NASA-wide perspective, use CFDP.

Why CFDP?

- ◆ *Loads* and *dumps* need improvement:
 - Individual commands use CCSDS Telecommand protocols; reusable code
 - Real-time telemetry uses CCSDS Telemetry protocols; reusable code
 - * Commands *loads* (of on-board programs/tables) require *custom* code for most missions.
 - * Telemetry *dumps* (of science data) require *custom* code for most missions.

Why CFDP?

- How to improve Loads and Dumps?
 - Loads and dumps are "file" transfers
 - Use a reliable file transfer protocol
 - * Enables code reuse and increased automation

Why CFDP?

- Which file transfer protocol?
 - Mission manager perspective
 - ♦ One that works well for *my* mission
 - NASA-wide perspective
 - One that works well for *all* missions
 - ♦ Reusable (*stable* standard)
 - ♦ Compatible with *both* existing infrastructure and IP

Why CFDP? - Protocol comparison

<u>Protocol</u>	Missions?	Stable?	Exist+IP?
FTP	Some	Y	
CFDP	A11	Y	Y
MDP	Some/All		
NORM	?		

Why CFDP? - Conclusion

- ◆ NASA-wide choice is CFDP
 - Works well for all missions (including near-Earth and Deep Space)
 - Stable (high probability of long-term reuse)
 - Compatible with both existing infrastructure and IP

What is CFDP? - Summary

- ◆ Virtual Filesystem
 - * CFDP delivers a block of data and a "filename"
 - * "Filename" maps to a Virtual Filesystem
 - * One CFDP node per Virtual Filesystem
- Reliable file delivery
 - ❖ Within CFDP = Acknowledged Service
 - ❖ By a lower layer = Unacknowledged Service
- Point-to-point; extensions support multiple hops

What is CFDP? – Features

- ◆ Pause one transaction
- Pause all transactions (between passes)
- ◆ Filestore directives (e.g. rename file)
- ◆ Record-oriented files
- User Messages

What is CFDP? – Implementer's view

- Reusable core module
 - * Protocol engine

- Implementation-specific interface modules
 - * User
 - Virtual Filesystem
 - Lower-layer communications
 - IP-related issues restricted to this module
 - ♦ Extensive CFDP/UDP experience

How does it work? - Summary

- ◆ Transaction initiated by *Put Request* from User
- Sender transmits the whole file once.
 - * Each "chunk" identifies its offset within file.
- For Acknowledged Service:
 - * Repeat as necessary:
 - Receiver reports any gaps.
 - ♦ Sender retransmits gaps
 - * Receiver reports "Finished"; Sender acknowledges.

How does it work? – First, Sender drives...

- ◆ Metadata →
 - * Source, destination, filename
 - Optional: Filestore Directive(s)
 - Optional: User Messages
 - Optional: non-default error-handling
- \bullet File-data \rightarrow
 - One per "chunk"; includes offset
- \bullet EOF \rightarrow
 - Specifies file length, includes file checksum
- ◆ (for Unacknowledged Service, done)

How does it work? $- \dots$ then Receiver drives.

- lacktriangle \leftarrow Ack-EOF
- **♦** ← Nak

NASA

- Specifies missing data
- (Deferred Nak; other modes exist)
- ◆ File-data →
- ◆ ← Finished
- \bullet Ack-Finished \rightarrow

How does it work? – Timers provide flexibility

◆ Ack-timer

NASA

- * Ensures EOF and Finished are delivered
- Mission-configurable
- Nak-timer
 - Ensures feedback is provided periodically
 - Mission-configurable
- ◆ Transaction-lifetime-timer
 - Clears out zombies
 - Mission-configurable

How does it work? - User Requests

- Put
 - * Starts a transaction.
- ◆ Cancel
 - * Cancel one transaction.
- ◆ Suspend/Resume
 - * Affects one transaction
- ◆ Freeze/Thaw
 - ❖ Pause all transactions (between passes).

References

- Web sites:
 - * www.ccsds.org CCSDS documents
 - www.ccsds.com commercial support
- CFDP documents:
 - * CCSDS 727.0-B-2 (protocol specs)
 - * CCSDS 720.1-G-1 (explanation)
 - * CCSDS 720.2-G-1 (Implementers Guide)
- For info on core CFDP:
 - * Timothy.J.Ray@nasa.gov 301-286-0581
- For info on multi-hop scenarios:
 - Scott.Burleigh@jpl.nasa.gov

- 1. Interplanetary Internet: An Architectural Framework for Space Internetworking: Adrian Hooke
- 2. User Data Services for Internet Based Spacecraft Applications: Joe Smith
- 3. CCSDS File Delivery Protocol (CFDP): Tim Ray
- 4. Internet Protocol Based Standards for Spacecraft Onboard Interfaces: Joe Smith

- 5. Standard Spacecraft Interfaces and IP Network Architectures: Jane Marquart
- 6. Standard Transport and Network Capabilities: Bob Durst
- 7. Next Generation Space Internet: Standards and Implementation: Keith Scott
- 8. Secure Space Networking: Howie Weiss
- 9. Delay Tolerant Networking: Scott Burleigh
- 10. CCSDS Link Layer Protocol Suite: Greg Kazz